BREAKOFTF OF VAPOR BUBBLES FROM A HEATING SURFACE

V. F., Prisnyakov UDC 536.423.1

The breakoff diameter of bubbles on a heating surface is determined in connection with the
pool boiling and forced-circulation boiling of liguids,

An important problem in the investigation of the mechanism of liquid boiling is the determination of
the vapor bubble breakoff diameters on a heating surface. Despite the many articles published on this prob-
lem, the most timely of which are [1-16], so far there has been a lack of theoretical results that are in
satisfactory agreement with the experimental data obtained by various authors under widely dissimilar con-
ditions, Detailed critical surveys of the problem may be found in [17, 19],

In the present article we give the results of a determination of the breakoff diameter of vapor bubbles
in boiling under the conditions of free convection as well as forced circulation; our results concur satisfac~
torily with the data of fifteen papers for three different liquids,

Let us consider the main forces acting on a vapor bubble situated on a heat-transmitting surface in a
liquid flow (Fig, 1):

The buoyancy is described as follows:
4 ’ U
Po= — Lmg (0 — o) Rj. @)

The coefficient tg accounts for the difference between the volume of a spherical bubble of radius Rq and the
volume of a nonspherical bubble having the same average radius; according to [9], we can set £g = 1.

The surface tension is determined from a relation similar to the one given in [9]:
Py=2L,m0sin6R,. (2)
The coefficient ¢ is to be determined later.

The drag forces are of two types: the drag Py due to growth of the bubble, i.e., the resistive force
determined by a velocity proportional to dR/dr, and the drag Py, due to forced circulation:

Pr = ~;— LR W, @)
1 ’
where
&} sin 20
Qp=1——+ .
Ed 2n

We determine the drag coefficients gg and &y from the values of the Reynolds numbers (see, e.g., [20])

2Rywr . 2Rwgy
’ ’ w Y S

Reg =

, (5)

on the assumption that the bubble is a sphere.
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Fig, 1. Schematic of forces
acting on a bubble during
breakoff at constant (a) and
variable (b) contact angle,

We calculate Py, and Rey, on the basis that the bubble diameter is comparable with the thickness of
the boundary layer and that w varies over the height [9]. By analogy with [9], we assume that the drag for
a variable speed is equivalent to that for some average speed wgy:

(I+cos 6) Ry

1 w(y) dy=eD (R, w, 6)

@av= {1 4+ cos®) R,

where for laminar flow in a circular pipe

=2 (1 4 cos 0) [1——1— (1 4+ cosB) Ry J ;
3 R’fr

for turbulent flow characterized by power-law velocities
1 / R, \»
g={ I+ — n) 14 cos @), © = (—J—’—) )
( 2 ( ) Ry

The velocity wg can be related to the bubble growth rate dR/d7| T=T14 " Rd by simple geometrical consider-
ations:

wg = (1 4 cosB) R, . (7
The quantity Ry is equal to [21]
; 2o { 1 a q
Ry=—""2_{ _—_Ja]/ — 2
e+ LY o rp"]’ ®
where
‘Ja = —'C_,L?T:—; fp: ___&I:_ 5
rp
2(1 -+ cos 0)

fo=

1
D f, = (1— cosb).
2 o0 2 Lsime) | 0T g (e

To determine the bubble growth time 73 up to the instant of break off (departure) we use the relation [21]
2

@+ f
From this equation we readily deduce the following expression for f{d by suitable transformations:
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Fig, 2. Comparison of theoretical and experimental
values of the dimensionless breakoff diameter for wa-
ter, I-VI) Calculated according to Egs. (18)-(21) at
temperature of 40, 60, 86, 100, 120, and 140°C, res-
pectively; VII-IX) calculated according to equations

in [12, 10, 11], respectively; 1-4) experimental points
from [22] at ty = 38, 43, 65, and 52°C; 5) experimental
points from [16]; 6) from [14]; 7) [25]; 8) [23]; 9)
[26]; 10) [24]; 11) [10]; 12-14) [8] at by =1.20 and 11
atm; 15) [18]; 16) {5]; 17) [7]; 18) [4]; 19) [28]; 20)
[29] (the parameters not otherwise indicated refer to
100°C).

where

R ST . a0
We l/ o Vog(p —o
g —o

o P4 20" —0)
= P

These relations enable us to determine the forces P, and PR:

P, = % Lw0R XN &R, @2, (11)
- / B W\ 082
Pr = 2n9,{r 0R, Ja? N R, sin® | 1— (1+q)1 T l/Tq) J . (12)

Here

i (1 —}-—;— fpj (1— cos 6)

/

p'w’

w = T Py = 5
Voglo—p) 2f

(1 4 cos 0 (fe — [ )"
Lsin@@+7,)

Note that a definite relationship exists between the numbers Nq and Ny and the Froude number Fr:

Py =

Ny, =foRyFry,,.
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We now set down the equilibrium conditions for the-forces acting on the vaporbubble at breakoff:
(Pycosa) + (P, - Pysina)? = (Pg + P2, (13)

Substituting the relati_ous derived above into (13) and effecting suitable transformations, we obtain the fol-
lowing equafions for Ry:

R+ gin WO B (< %t et
d 4 S agwtpthe w d ? Lcwcpw‘e‘)

3, . Ja*N R ¥
X No®*R; = 5 Losin®f 1+ %Caﬁa q/'%/— 0572 . (14)
' Ja b

This ponderous equation cannot be solved analytically. Therefore, in order to simplify it we rely on the
fact that the term confaining g in (9) only slightly affects the value of R (see [21]). Then Ry can be found by
solving the simpler equation

— — 2 ——
RS+ % L, SiN 0, 82N, D*RG + (% X;cpwcwezj NLO*RY

_8

3 ., 8 . _
_(? Z;asme) Ri— s §R§031n6(1+cose)21‘}Ja4Rd_[27n2

2
el —|—c058)1‘)‘—] Ja® = 0, (15)
in which

_ 16 (1 + cos8) Jat

Re .
® O Pr’

To test the reliability of the results we consider some special cases,

In the case of pool boiling on a horizontal surface (¢ = 0, w = 0) we obtain a third-degree equation from
(15):
8(1 -+ cos )

Tzﬂ}»—;— fosind Ry— —— =S50 [ Jat=0. (16)

The form of the solution is determined by the sign of the quantity Q:

Q= ¥ Ja —— s, a7
where
= 2(1 -+ cos ) JQ
- [ 3V 3n )
I
o (z,sin )"
5221 o ,
P21 (1+ cos )% (L)
then Q > 0, and the solution of Eq. (16) has the form
1 L
Ry={9i0 Ja + 1V Q) * + (98 3af -1 Q) ° . (18)

For large numbers Ja > 100 the second term of Eq. (17) is negligible, whereupon we obtain the following
simpler relation for the breakoff radius:

Rim —o {1+ cos O (8" 37 . (19)
3y nt
If Q@ < 0, the solution (16) is determined in general from the relation
- P ! V2,0 Jat
R, = v/ 2¢,sin6 cos [~3 are cos W 20}
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TFig. 3. Comparison of theoretical and experimental values of the dimen-
sionless breakoff diameter for methanol and n-pentane. I) Calculated ac-
cording to (18)-(21) for methanol at tg = 25 to 65°C; II) calculated accord-
ing to (18)~(21) for n-pentane; 1-6) experimental data of [22] for methanol
at py = 134, 204, 304, 397, 540, and 760 mm Hg; 7-8) experimental data
of {22] for n~-pentane at pg = 760 and 524 mm Hg, respectively,

Fig, 4, Relative breakoff radius —ﬁd/ﬁg versus number Ny, for water, 1)
Experimental points; 2) average values; 3) calculated according to (23).

For small Jakob numbers (Ja < 20) the solution has the form

- 3 )
R, = ]/? Lssin 8. (21)

An analysis of Eqs, (18)-(21) leads to the following conclusions. For large temperature differentials (large
Ja) the bubble cannot form a "stem™ and departs essentially at a constant contact angle (see Fig, la), cor-
responding to g =1 (T mode), In this case Eq. (19), apart from a constant multiplier, goes over to Rucken-
stein's equation [12]. For small temperature differentials (small Ja) surface tension forces play a decisive
role., In this case bubble breakoff occurs from an elongated "stem™ formation (see Fig. 1b) (L mode), and
Eq. (21) corresponds to Fritz's equation [10]; according to [9], Ly = 0.36.% Between these two modes, in
the interval of limiting Jakob numbers Jaj;,,, is a certain transition mode.

In order to test the foregoing results we borrowed the experimental results of fifteen papers, in which
such liguids as water, methanol, and n~pentane were investigated, The theoretical and experimental values
obtained for water are shown in Fig, 2, along with the theoretical curves calculated according to the equa~
tions of Ruckenstein {(curve VII) and Fritz (VIII) and according to Egs. (18)-(21) at various temperatures
(I through VI). The equations proposed above yield better quantitative as well as qualitative agreement with
the experimental results, The experimental and theoretical values for methanol and n-pentane are given
in Fig, 3.

_ We now consider forced-circulation boiling of a ligquid, In this case it is impossible to solve Eq, (15)
for Rd' We can only determine Ry in implicit form:

1
1 - R 55 ' 7__ 8 . ﬁd
Nw:’W {[? sina 6‘;— —B(Ry, O, v, 9)] -3 Siia ‘@E} . (22)
For boiling in a horizontal pipe this relation is simplified:
8 3 R — ‘P, 3 2 _6']().5
Ny= ——2 {2 ¢ sineR,+- 2 K) R, (23)
BRAEDX Ly Pur [( 5 ¢ SR R I

%[t is interesting to note that a comparison of Eqg. (21) with the corresponding equation in [3] yields go_ = (sin
9)—0.5.
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where
(p'—i(l—i— o) #?i/ e
== cos )5 K, = 1/;0 Ja.

For small values of Rd we can derive an approximate relation for the direct dependence of f{d on Ny,
In this case the last two terms under the radical in Eq. (23) can be dropped, yielding a cubic equation in
Rd:

7 _( 4L,sin @ h _ 64 qLsineKy o
R N A e T N el
the solution of which is also determined by the sign of the discriminant of the equation.
To test the results we borrowed the experimental data of [9]. The calculated and experimental values

are compared in Fig, 4, which gives the rafio of the breakoff radins ﬁd to the value of the radius —ﬁg for
pool boiling as a function of the number N,.

NOTATION
Rg is the breakoif radius;
p', p" arethe densities of liquid and vapor;
P is the force;
o ig the surface tension;
e is the contact angle;
w ig the velocity;
v is the kinematic viscosity;
de is the equivalent diameter;
q ig the heat flux;
a is the thermal diffusivity;
o is the angle of surface relative to horizontal;
¢ is the force coefficient;
Way is the integral-average velocity over bubble surface;
w is the velocity in flow;
Xe is the coefficient accounting for the deviation of the drag obtained at the integral-average velocity

Way (Or Rewav) from the average drag (Xg is assumed to be equal to 9 according to [9]).
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